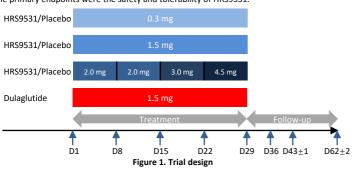
Safety, pharmacokinetics (PK), and pharmacodynamics (PD) of a dual GLP-1/GIP receptor agonist HRS9531 in T2DM patients: A randomized, double-blind, placeboard open-label positive-controlled phase 1b trial

Lin Zhao¹, Qing Wen², Yongdong Zhang³, Guoning Yu⁴, Tianrong Pan⁵, Yuan Wang⁶, Fulun Li⁷, Ping Jin⁸, Hongwei Jiang⁹, Meifang Zeng¹⁰, Xiaoying Li¹, <u>Xuening Li¹</u>


¹Zhongshan Hospital, Fudan University, Shanghai, China; ²Jinan Central Hospital, Jinan, China; ²The First People's Hospital of Chenzhou, Chenzhou, China; ⁴The People's Hospital of Liaoning province, Shenyang, China; ⁵The Second Hospital of Anhui Medical University, Hefei, China; ⁶The Fourth Hospital of Hebei Medical University, Shijiazhuang, China; ⁷Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ⁸Third Xiangya Hospital, Central South University, Changsha, China; ⁹The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; ¹⁰Jiangsu Hengrui Pharmaceuticals Co. Ltd, Shanghai, China

Introduction

- Accumulating clinical evidence suggests that a dual Glucagon-like peptide 1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist can achieve additive or synergetic effects on glycemic control and body weight loss by regulating both GLP-1 and GIP receptors 1-3
- ➤ HRS9531, a novel long-acting dual GLP-1/GIP receptor agonist, effectively lowers blood glucose and body weight in a phase 1 trial with healthy subjects.⁴
- This study assessed the safety, PK, and PD of HRS9531 in T2DM patients

Methods

- ➤ This is a randomized, double-blind, placebo-and open-label positive-controlled phase 1b trial (NCT05516966, Figure 1).
- ➤ Patients aged 18–65 years with a ≥6-month history of T2DM and prior lifestyle intervention or stable metformin treatment for ≥8 weeks were enrolled.
- ➤ Patients were randomized to receive weekly subcutaneous injections of HRS9531 (0.3 mg, 1.5 mg, 4.5 mg [2.0/2.0/3.0/4.5 mg titration]), dulaglutide (1.5 mg), or placebo for 4 weeks.
- > The primary endpoints were the safety and tolerability of HRS9531.

Results

Participants

A total of 63 patients (men/women: 38/25) received the assigned treatments, including 43 patients with HRS9531, 8 patients with dulaglutide, and 12 patients with placebo (Table 1).

Table 1. Baseline characteristics

	HRS9531 0.3 mg (N=13)	HRS9531 1.5 mg (N=16)	HRS9531 4.5 mg (N=14)	Dulaglutide (N=8)	Placebo (N=12)
Age, years	54.1±10.5	54.4±10.5	47.4±10.9	48.0±10.6	48.4±14.4
Male	8 (61.5)	9 (56.3)	9 (64.3)	3 (37.5)	9 (75.0)
Weight, kg	74.8±14.3	75.6±15.9	80.3±11.7	79.3±16.5	79.3±14.1
BMI, kg/m ²	27.8±3.3	27.6±3.9	29.0±2.9	29.2±3.6	28.1±3.0
HbA1c, %	8.2±0.6	7.9 ± 0.7	7.7±0.7	7.8±0.6	7.5±0.7
Duration of T2DM, years	5.0 ± 4.0	6.4±5.9	3.4 ± 1.9	5.5±4.5	4.7±4.3
History of metformin	7 (53.8)	7 (43.8)	6 (42.9)	3 (37.5)	6 (50.0)

Data are mean±SD or n (%)

Safety

- Adverse events (AEs) were reported in 84.1% (53/63) of patients, mostly mild
- Treatment-related AEs (TRAEs) were reported in 42.9% (27/63) of patients (Table 2).
- ➤ Gastrointestinal AEs (nausea, diarrhea, and vomiting) were dose-related, primarily in the 4.5 mg group of HRS9531 (28.6%, [4/14]).
- > There were no severe AEs, serious AEs, AEs leading to treatment discontinuation, or deaths.

Table 2. TRAE

Table 2. TRALS								
	HRS9531 0.3 mg (N=13)	HRS9531 1.5 mg (N=16)	HRS9531 4.5 mg (N=14)	Dulaglutide (N=8)	Placebo (N=12)			
Total TRAE	6 (46.2)	5 (31.3)	9 (64.3)	2 (25.0)	5 (41.7)			
Diarrhea	1 (7.7)	1 (6.3)	3 (21.4)	0	2 (16.7)			
Lipase increased	2 (15.4)	0	3 (21.4)	0	2 (16.7)			
Decreased appetite	1 (7.7)	0	3 (21.4)	1 (12.5)	1 (8.3)			
Vomiting	1 (7.7)	0	2 (14.3)	1 (12.5)	0			
Nausea	0	1 (6.3)	2 (14.3)	0	1 (8.3)			
Abdominal nain	0	0	2 (14 3)	0	0			

Data are n (%). TRAEs occurring in two or more patients in either group are listed.

PK

- > The exposure of HRS9531 (C_{max} and AUC) increased with dose escalation within the range of 0.3–4.5 mg (Figure 2), with a mean half-life of approximately 1 week.
- The median T_{max} were 72.0–94.8 h after single dosing of HRS9531 and 48.0–71.8 h after the fourth dosing

PD

- Levels of fasting plasma glucose (FPG), AUC_{0-3h} of glucose, and body weight decreased dose-dependently after HRS9531 treatment (Table 3, Figure 3-5).
- HRS9531 outperformed placebo in reducing HbA1c and serum LDL cholesterol in a dose-dependent manner (Table 3).
- ➤ The proportions of patients achieving FPG target (<7 mmol/L) and 2-hour postprandial plasma glucose (2h-PPG) target (<10 mmol/L) on Day 29 in the HRS9531 1.5 mg and 4.5 mg groups were higher than those in the dulaglutide group and placebo group (Figure 6–7).

Results

Table 3. The percentage changes from baseline on Day 29

	HRS9531 0.3 mg (N=13)	HRS9531 1.5 mg (N=16)	HRS9531 4.5 mg (N=14)	Dulaglutide (N=8)	Placebo (N=12)
HbA _{1c}	-3.2±3.7	-7.4±5.0	-9.6±3.5	-7.3±4.6	1.7±7.8
FPG	-8.8±16.1	-26.9±22.1	-29.3±12.1	-22.6±26.5	-5.3±9.9
AUC _{0-3h} of glucose	-16.2±11.7	-30.3±26.3	-45.2±7.7	-22.0±21.4	-6.5±14.4
Body weight	-0.3±2.0	-2.6±1.0	-3.0±2.7	-2.2±1.9	-1.0±1.6
Serum LDL cholesterol	-5.1±14.0	-5.4±19.1	-12.5±22.7	-8.1±18.5	-4.7±24.3
Data are mean±SD.					

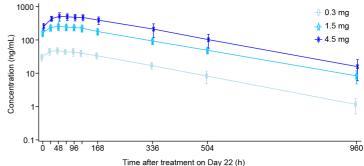


Figure 2. HRS9531 concentration-time curve at steady state (mean ± SD)

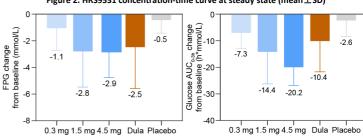


Figure 3. Change from baseline in FPG level at Day 29 (mean ± SD)

Figure 4. Change from baseline in glucose AUC_{0-3h} on Day 29 (mean±SD)

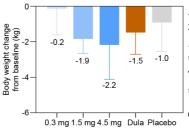


Figure 5. Change from baseline in body weight on Day 29 (mean士SD)

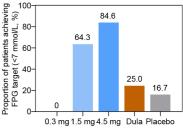


Figure 6. Proportion of patients achieving FPG target (<7 mmol/L) on Day 29

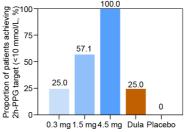


Figure 7. Proportion of patients achieving 2h-PPG target (<10 mmol/L) on Day 29

Conclusions

- > HRS9531 was well-tolerated.
- > HRS9531 had favorable PK, and effectively reduced blood glucose and body weight in T2DM patients.
- These findings support further development of HRS9531 for T2DM treatment.

Conflicts of Interest

> Xuening Li has nothing to declare.

Acknowledgements

- The patients and their families.The investigators and clinical study sites.
- The study is sponsored by Jiangsu Hengrui Pharmaceuticals Co., Ltd.